DOI: 10.1186/s13550-018-0361-0Pages: 1-7

Phantom and clinical evaluation of the effect of full Monte Carlo collimator modelling in post-SIRT yttrium-90 Bremsstrahlung SPECT imaging

1. Oxford University Hospitals NHS Foundation Trust, Radiation Physics and Protection, Churchill Hospital

2. Oxford University Hospitals NHS Foundation Trust, Department of Radiology, Churchill Hospital

3. University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Centre, Clinical Physiology and Nuclear Medicine

4. University of Oxford, Department of Oncology

Correspondence to:
Charlotte A. Porter
Tel: +44 (0)1865 226357
Email: charlotte.porter@ouh.nhs.uk

Close

Abstract

Background

Post-therapy SPECT/CT imaging of 90Y microspheres delivered to hepatic malignancies is difficult, owing to the continuous, high-energy Bremsstrahlung spectrum emitted by 90Y. This study aimed to evaluate the utility of a commercially available software package (HybridRecon, Hermes Medical Solutions AB) which incorporates full Monte Carlo collimator modelling. Analysis of image quality was performed on both phantom and clinical images in order to ultimately provide a recommendation of an optimum reconstruction for post-therapy 90Y microsphere SPECT/CT imaging.

A 3D-printed anthropomorphic liver phantom was filled with 90Y with a sphere-to-background ratio of 4:1 and imaged on a GE Discovery 670 SPECT/CT camera. Datasets were reconstructed using ordered-subsets expectation maximization (OSEM) 1–7 iterations in order to identify the optimal OSEM reconstruction (5 iterations, 15 subsets). Quantitative analysis was subsequently carried out on phantom datasets obtained using four reconstruction algorithms: the default OSEM protocol (2 iterations, 10 subsets) and the optimised OSEM protocol, both with and without full Monte Carlo collimator modelling. The quantitative metrics contrast recovery (CR) and background variability (BV) were calculated.

The four algorithms were then used to retrospectively reconstruct 10 selective internal radiation therapy (SIRT) patient datasets which were subsequently blind scored for image quality by a consultant radiologist.

Results

The optimised OSEM reconstruction (5 iterations, 15 subsets with full MC collimator modelling) increased the CR by 42% (p < 0.001) compared to the default OSEM protocol (2 iterations, 10 subsets). The use of full Monte Carlo collimator modelling was shown to further improve CR by 14% (30 mm sphere, CR = 90%, p < 0.05).

The consultant radiologist had a significant preference for the optimised OSEM over the default OSEM protocol (p < 0.001), with the optimised OSEM being the favoured reconstruction in every one of the 10 clinical cases presented.

Conclusions

OSEM (5 iterations, 15 subsets) with full Monte Carlo collimator modelling is quantitatively the optimal image reconstruction for post-SIRT 90Y Bremsstrahlung SPECT/CT imaging. The use of full Monte Carlo collimator modelling for correction of image-degrading effects significantly increases contrast recovery without degrading clinical image quality.

This article is freely available, click here to access the full text/PDF

  • Accepted: Jan 10, 2018
  • Online: Jan 22, 2018

Article Tools

eanm
EJNMMI Ad