DOI: 10.1186/s13550-018-0383-7Pages: 1-9

Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging

1. German Cancer Research Center (DKFZ), Clinical Cooperation Unit Nuclear Medicine

2. University Hospital Heidelberg, Department of Internal Medicine V

3. National Center for Tumor Diseases (NCT) Heidelberg

4. German Cancer Research Center (DKFZ), Division of Radiopharmaceutical Chemistry

5. German Cancer Consortium (DKTK)

6. German Cancer Research Center, Department of Biostatistics

Correspondence to:
C. Sachpekidis




Despite the significant upgrading in recent years of the role of 18F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3′-Deoxy-3′-[18F]fluorothymidine (18F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18F-FDG PET/CT.


Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18F-FDG PET/CT and 18F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18F-FDG PET/CT demonstrated focal, 18F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18F-FLT PET/CT showed focal, 18F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18F-FDG avid, focal, MM-indicative lesions were detected with 18F-FDG PET/CT, while 17 18F-FLT avid, focal, MM-indicative lesions were detected with 18F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18F-FDG PET/CT than for 18F-FLT PET/CT. A common finding was a mismatch of focally increased 18F-FDG uptake and reduced 18F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUVmean and SUVmax were significantly higher for 18F-FLT than for 18F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in reference bone marrow for both tracers.


Despite the limited number of patients analyzed in this pilot study, the first results of the trial indicate that 18F-FLT does not seem suitable as a single tracer in MM diagnostics. Further studies with a larger patient population are warranted to generalize the herein presented results.

This article is freely available, click here to access the full text/PDF

  • Accepted: Mar 23, 2018
  • Online: Apr 10, 2018

Article Tools